Order of Operations-Explanation \& Practice

The properties of real numbers are often used to rewrite algebraic expressions.

The Order of Operations Agreement

To simplify an expression with more than one operation follow these steps:
Step 1 Perform operations inside grouping symbols. Grouping symbols include parentheses (), brackets [], braces \{\}, the fraction bar, and the absolute value symbol || .

Step 2 Simplify exponential expressions.
Step 3 Perform multiplication and division as they occur from left to right.
Step 4 Perform addition and subtraction as they occur from left to right.
Use the saying Please Excuse $\underline{M y}$ Dear $\underline{A} u n t$ Sally to remember the order of operations:
Please: \quad Parentheses - Perform the operations within grouping symbols first (parentheses, fraction bar, etc.), in the order given in steps 2, 3, and 4.

Excuse: Exponents - Perform the operations indicated by exponents.
My Dear: \quad Multiply and Divide - Perform only multiplication and division as they appear from left to right.

Aunt Sally: $\underline{\text { Add and Substract - Perform addition and subtraction as they appear }}$ from left to right.

Simplify: $\quad 12-24(8-5) \div 2^{2}$

$12-24(8-5) \div 2^{2}$	Step 1)	Perform operations inside grouping symbols		
$12-24(3) \div 2^{2}$	Step 2)	Simplify exponential expressions.		
$12-24(3) \div 4$	Step 3)	Perform multiplication and division as they occur from $12-72 \div 4$		
$12-18$ $12+(-18)$ -6	Step 4) to right			Perform addition and subtraction as they occur
:---				
from left to right.				

One or more of the previous steps may not be needed to simplify an expression. In that case, proceed to the next step in the Order of Operations Agreement.

Simplify: $\frac{4+8}{2+1}-(3-1)+2$

When an expression has grouping symbols inside grouping symbols, perform the operations inside the inner grouping symbols first.

Simplify: $\quad 6 \div[4-(6-8)]+2^{2}$

More Examples of Simplifying Expressions Using the Order of Operations

1) $8-10 \div 2$

Divide
8-5
3
2) $(6-4)(6)$

Subtract inside parentheses Multiply
3) $54 \div 6 \cdot 3$

Neither multiplication nor division takes precedence over
27 the other, so perform the operations from left to right.
4) $7 \cdot 9+6 \cdot 2$
$63+12$
Multiply
75
5) $25-6 \div 3+8 \cdot 4$ $25-2+32$
$23+32$
Divide and multiply
Subtract
Add
55
Add
6) $5 \cdot 9+9-6(7+1)$
$5 \cdot 9+9-6 \bullet 8$
$45+9-48$
54-48
6
Add in () first
Multiply
Add
Subtract
7) $3 \cdot 4^{3}-8 \cdot 3^{2}+11$ Exponents

3•64-8•9+11 Multiply
192-72+11 Subtract
$120+11 \quad$ Add
131
8) $\left(2^{2}+2 \cdot 3\right)^{2}+3^{2}$

$$
\left(2^{2}+2 \cdot 3\right)^{2}+3^{2}
$$

$$
(4+2 \cdot 3)^{2}+3^{2}
$$

$$
(4+6)^{2}+3^{2}
$$

$10^{2}+3^{2}$
$100+9$ 109

Perform operations inside parentheses using proper order:
Inside the parentheses: exponents
Inside the parentheses: multiply
Inside the parentheses: add
No more grouping symbols; note the exponents Add

Practice

1. $(2+8)-(7-3)$
2. $5(6-4)+2(8-5)$
3. $(7+3) \cdot 6+5$
4. $7+(3 \cdot 6)+5$
5. $4 \cdot 3+6 \cdot 5$
6. $4 \cdot 14-9 \div 3+6 \cdot 2$
7. $24 \div 6+6-3(5-3)$
8. $5 \cdot 2^{3}-2 \cdot 4^{2}+25-7 \cdot 3$
9. $\left(3^{3}-12 \div 4\right)^{2}+5^{2}$
10. $2 \cdot[4+3(7-2)]$
11. $3+[2(16+9)]$
12. $[5(x+2)]-3 x$
13. $(3 x+5)+4(2 x+7)]$
14. $16 x-[5(2 x+7)]$
15. $[37(6 x-5 x)]-35 x$
16. $[4(2 x-5)+7]+[3(x+3)+5 x]$
17. $[7(x+5)-19]-[4(x-6)+10]$
18. $3\{[6(x-2)+4]-[2(2 x-5)+6]\}$
19. $[(3 \cdot 2 x)+5]+\{4 x-[7(x+2)]\}$
20. $\frac{7+5}{8-2 \cdot 2} \cdot 2^{2}+3$

