Polynomials: Addition and Subtraction-Explanation

Adding Polynomials

To add polynomials, we add like terms. For a review of terms and how we add them, see the Terms Handout, \#390.

Addition of polynomials problems usually appear horizontally arranged, like $\left(3 x^{2}+2 x+3\right)+$ $\left(4 x^{2}-5 x+2\right)$. The parentheses can be removed immediately to get $3 x^{2}+2 x+3+4 x^{2}-5 x+2$. The task, then, is to find and add like terms; which gives us $7 x^{2}-3 x-1$, which is our answer!

Example

Add the polynomials: $\quad(x-7)+(2 x+5)=$

$$
\begin{array}{ll}
x-7+2 x+5= & \text { remove parentheses } \\
3 x-2 & \text { add like terms }
\end{array}
$$

Example

Add the polynomials: $\quad(2 x+4)+(-5 x-7)=$

$$
2 x+4-5 x-7=\quad \text { remove parentheses }
$$

$$
-3 x-3
$$

Example

Add the polynomials: $\quad\left(3 x^{2}-5\right)+\left(7 x^{2}-3 x+4\right)=$

$$
\begin{array}{cl}
3 x^{2}-5+7 x^{2}-3 x+4= & \text { remove parentheses } \\
10 x^{2}-3 x-1 & \text { add like terms }
\end{array}
$$

Vertical arrangement:

These same problems can be re-written vertically with like terms aligned. This may help you to be more organized.

Example

Add the polynomials: $\quad(x-7)+(2 x+5)=\quad$ re-write vertically and align like terms

$$
\begin{array}{r}
(x-7) \\
+(2 x+5)
\end{array} \triangleleft \begin{gathered}
x-7 \\
\frac{2 x+5}{3 x-2}
\end{gathered}
$$ remove parentheses

add like terms

Example

Add the polynomials:

$$
\begin{aligned}
& \left(3 x^{2}-5\right)+\left(7 x^{2}-3 x+4\right)= \\
& 3 x^{2}-5 \\
& \frac{7 x^{2}-3 x+4}{10 x^{2}-3 x-1}
\end{aligned}
$$

re-write vertically and align like terms Note the missing " x " term in the first polynomial. Leave a space for it or write it in as " $0 x$."

Subtracting Polynomials

You will recall the basic subtraction rule for integers which tells us to add the opposite (of what is being subtracted). Two sign changes are needed:

1. The subtraction sign changes to addition and
2. The sign (positive or negative) of each quantity being subtracted is changed to its opposite. Recall that $3-7$ is $3+(-7)$ and $2-(-8)$ is $2+(+8)$. This applies to subtraction of polynomials as well.

Example

Subtract the polynomials: $\left(3 x^{2}-2 x+4\right)-\left(5 x^{2}+6 x-1\right)$

$$
\begin{aligned}
& 3 x^{2}-2 x+4-5 x^{2}-6 x+1 \\
& -2 x^{2}-8 x+5
\end{aligned}
$$

Example

Subtract the polynomials: $(7 x-8)-(4 x-6)$

$$
\begin{aligned}
& 7 x-8-4 x+6 \\
& 3 x-2
\end{aligned}
$$

Vertical arrangement:

Subtraction of polynomial problems can also be re-written vertically. Remember to account for any "missing terms" by leaving a space or indicating that there are " 0 " of them.

Example

Subtract the polynomials: $\left(3 x^{2}-2 x+4\right)-\left(5 x^{2}+6 x-1\right)$

$$
\begin{aligned}
&\left(3 x^{2}-2 x+4\right) \\
&-\left(5 x^{2}+6 x-1\right) \\
& \hline
\end{aligned} \begin{array}{r}
\left(3 x^{2}-2 x+4\right) \\
-2 x^{2}-6 x+5
\end{array} \quad \text { add the opposite }
$$

Example

Subtract the polynomials: $\left(4 x^{3}-2 x+7\right)-\left(5 x^{2}+3\right)$

$$
\begin{array}{ll}
-\left(4 x^{3}-2 x+7\right) & \text { account for all missing terms } \\
-\left(\begin{array}{rr}
-(& \left.5 x^{2}+3\right)
\end{array}\right. & \text { align like terms } \\
\hline\left(4 x^{3}-2 x+7\right) & \\
+\left(-5 x^{2}-3\right) & \text { re-write as addition of opposite } \\
\hline 4 x^{3}-5 x^{2}-2 x+4 & \text { add like terms }
\end{array}
$$

