Polynomials: Addition and Subtraction—Explanation

Adding Polynomials

To add polynomials, we add **like terms**. For a review of terms and how we add them, see the Terms Handout, #390.

Addition of polynomials problems usually appear <u>horizontally</u> arranged, like $(3x^2 + 2x + 3) + (4x^2 - 5x + 2)$. The parentheses can be removed immediately to get $3x^2 + 2x + 3 + 4x^2 - 5x + 2$. The task, then, is to find and add like terms; which gives us $7x^2 - 3x - 1$, which is our answer!

Example

Add the polynomials:	(x-7) + (2x + 5) = x - 7 + 2x + 5 = 3x - 2	remove parentheses add like terms
Example Add the polynomials:	(2x + 4) + (-5x - 7) = 2x + 4 - 5x - 7 = -3x - 3	remove parentheses add like terms

Example

Add the polynomials:	$(3x^2 - 5) + (7x^2 - 3x + 4) =$	
	$3x^2 - 5 + 7x^2 - 3x + 4 =$	remove parentheses
	$10x^2 - 3x - 1$	add like terms

Vertical arrangement:

These same problems can be re-written vertically with like terms aligned. This may help you to be more organized.

Example

Add the polynomials: (x-7) + (2x+5) = $(x-7) + (2x+5) \xrightarrow{x-7} + (2x+5) \xrightarrow{x-7} 3x-2$

re-write vertically and align like terms remove parentheses

add like terms

Example

Add the polynomials:

$(3x^2 - 5)$	$) + (7x^{2})$	$^{2}-3x$	+ 4) =
$3x^2$	- 5		
$7x^2 - 3x$	c + 4		
$10x^2 - 3x^2$	$x-\overline{1}$		

re-write vertically and align like terms Note the missing "x" term in the first polynomial. Leave a space for it or write it in as "0x."

Subtracting Polynomials

You will recall the basic subtraction rule for integers which tells us to <u>add</u> the <u>opposite</u> (of what is being subtracted). Two sign changes are needed:

- 1. The subtraction sign changes to addition and
- 2. The sign (positive or negative) of each quantity being subtracted is changed to its opposite. Recall that 3 7 is 3 + (-7) and 2 –(-8) is 2 + (+8). This applies to subtraction of polynomials as well.

Example

Subtract the polynomials:
$$(3x^2 - 2x + 4) - (5x^2 + 6x - 1)$$

 $(3x^2 - 2x + 4) + (-5x^2 - 6x + 1)$
add opposite
 $3x^2 - 2x + 4 - 5x^2 - 6x + 1$
 $-2x^2 - 8x + 5$

Rewrite the problem as <u>addition</u> of the <u>opposite</u>.

We now have an <u>addition</u> of polynomials problem. Apply all you know about <u>adding</u> polynomials.

Example

Subtract the polynomials: (

$$(7x-8) - (4x-6)$$

 $(7x-8) + (-4x+6)$
add opposite

$$7x - 8 - 4x + 6$$
$$3x - 2$$

Vertical arrangement:

Subtraction of polynomial problems can also be re-written vertically. Remember to account for any "missing terms" by leaving a space or indicating that there are "0" of them.

Example

Subtract the polynomials:
$$(3x^2 - 2x + 4) - (5x^2 + 6x - 1)$$

 $(3x^2 - 2x + 4) - (5x^2 - 2x + 4)$
 $-(5x^2 + 6x - 1) + (-5x^2 - 6x + 1)$
 $-2x^2 - 8x + 5$ add the opposite

Example

Subtract the polynomials:

$$(4x^3 - 2x + 7) - (5x^2 + 3) - (4x^3 - 2x + 7) - (5x^2 + 3)$$

$$(4x^{3} - 2x + 7) + (-5x^{2} - 3) + (x^{3} - 5x^{2} - 2x + 4)$$

account for all missing terms align like terms

re-write as addition of opposite add like terms