Polynomials: Binomial Multiplication Using FOIL Explanation

One type of polynomial is a **binomial**. These polynomials contain **two terms**. Examples are x - 3, y + 4, m + 2n, $3x^2 - 4y^3$, and $5x^2 + 7$

When a binomial is multiplied times a binomial, we have a problem that looks like this: (x + 3)(x + 2) =

With this type of problem, we can think of having two sets of distributions to do,

(x + 3)(x + 2) and (x + 3)(x + 2)giving us four multiplications, each involving monomials. (x)(x) and (x)(2) and (3)(x) and (3)(2)resulting in $x^2 + 2x + 3x + 6$. Combining like terms gives us our answer: $x^2 + 5x + 6$

To help us remember all these steps, we have the word "FOIL," which stands for First– Outer–Inner – Last.

If you multiply the terms in each of these positions, you will have all four products you will need.

Example 1

(x+3)(x+7) =

Using FOIL:	
(x+3)(x+7)	F irst: (<i>x</i>)(<i>x</i>)
(x + 3)(x + 7)	O uter: $(x)(7)$
(x + 3)(x + 7)	Inner: (3)(<i>x)</i>
(x + 3)(x + 7)	Last: (3)(7)

Add the four products:

 $x^2 + 7x + 3x + 21$ Answer: $x^2 + 10x + 21$ Add

Adding like terms 7x and 3x

Example 2

(2x - y)(3x + 5y) =FIRST OUTER INNER LAST (2x)(3x) + (2x)(5y) + (-y)(3x) + (-y)(5y) $(6x^{2}) + (10xy) + (-3xy) + (-5y^{2})$ Add like terms $\begin{bmatrix} LIKE \ TERMS \\ -xy - 5y^{2} \end{bmatrix}$

Example 3

(3m+4)(2m-3n) =FIRST OUTER INNER LAST $6m^2 - 9mn + 8m - 12n$

There are no like terms to add in this one!

Polynomials: Binomial Multiplication Using FOIL—Explanation 2/26/14, rev. 2/16/17—mm-fd