Polynomials: Binomial Multiplication Using FOIL— Explanation

One type of polynomial is a binomial. These polynomials contain two terms. Examples are $x-3, y+4, m+2 n, 3 x^{2}-4 y^{3}$, and $5 x^{2}+7$

When a binomial is multiplied times a binomial, we have a problem that looks like this:

$$
(x+3)(x+2)=
$$

With this type of problem, we can think of having two sets of distributions to do,

giving us four multiplications, each involving monomials.

$$
(x)(x) \text { and }(x)(2) \quad \text { and } \quad(3)(x) \text { and (3)(2) }
$$

resulting in $x^{2}+2 x+3 x+6$.
Combining like terms gives us our answer: $x^{2}+5 x+6$
To help us remember all these steps, we have the word "FOIL," which stands for First- Outer- Inner - Last.

If you multiply the terms in each of these positions, you will have all four products you will need.

Example 1

$$
\begin{array}{lll}
(x+3)(x+7)= & \text { Using FOIL: } & \\
(\boldsymbol{x}+3)(\boldsymbol{x}+7) & \text { First: }(x)(x) \\
(\boldsymbol{x}+3)(x+7) & \text { Outer: }(x)(7) \\
& (x+3)(\boldsymbol{x}+7) & \text { Inner: }(3)(x) \\
& (x+3)(x+7) & \text { Last: }(3)(7)
\end{array}
$$

Add the four products:

$$
x^{2}+7 x+3 x+21
$$

Answer: $x^{2}+10 x+21$ Adding like terms $7 x$ and $3 x$

Example 2

Example 3

$$
(3 m+4)(2 m-3 n)=
$$

FIRST OUTER INNER LAST
$6 m^{2}-9 m n+8 m-12 n \quad$ There are no like terms to add in this one!

