Solving Systems of Linear Equations-Explanation \& Practice

EXAMPLES:

A) Solve using the substitution method: $2 x+5 y=11$

$$
x=y+2
$$

Substitute $y+2$ for x.

$$
\begin{aligned}
2 x+5 y & =11 \\
2(y+2)+5 y & =11 \\
2 y+4+5 y & =11 \\
7 y & =7 \\
y & =1
\end{aligned}
$$

Then substitute 1 for y and solve for x.

$$
\begin{aligned}
& x=y+2 \\
& x=1+2 \\
& x=3
\end{aligned}
$$

The solution is $(3,1)$
B) Solve using the elimination method: $\quad 3 x-2 y=16$

$$
x+y=2
$$

Multiply the second equation by 2 and then add.

$$
\begin{aligned}
3 x-2 y & =16 \\
2 x+2 y & =4 \\
5 x \quad & =20 \\
x & =4
\end{aligned}
$$

Then substitute 4 for x and solve for y.

$$
\begin{array}{r}
3 x-2 y=16 \\
3 \cdot 4-2 y=16 \\
12-2 y=16 \\
y=-2
\end{array}
$$

The solution is $(4,-2)$

SOLVE.

1. $\begin{aligned} & x+y=7 \\ & y=x-3\end{aligned}$
2. $a+b=-4$
$b=a-6$
3. $y-3 x=-7$
$2 y-x=6$
4. $6 x-y=1$
$6 x=y-3$
5. $y=x+1$
$3 x+y=9$
6. $x+3 y=-7$
$y=2 x$
7. $r-3 s=0$
$2 r+4 s=10$
8. $\quad \begin{aligned} & 3 x=y+5 \\ & x+2 y=4\end{aligned}$

$$
x+2 y=4
$$

9. $y-4 x=-18$
$2 x+3 y=2$
10. $a+b=9$
$a-b=7$

$$
\text { 11. } \begin{aligned}
& x-2 y=-5 \\
& y-2 x=10
\end{aligned}
$$

13. $r+4 s=14$
$r-s=4$
14. $3 x=8 y+5$
$x+6 y-6=0$
15. $3 x-2 y=-17$ $2 x+3 y=-33$
16. $x-\frac{2}{3} y=19$

$$
\frac{1}{3} x+y=-12
$$

ANSWERS:

1.
2.
3.
4. $\quad(-1,-2)$
5.

$(4,5)$
6.
7.
8.
9.
10.
11. $(-5,0)$
12. $(-1,3)$
12. $6 c+5 d=9$
$c-5 d=-16$
14. $2 a=7 b$
$a+3=5 b$
16. $x-3 y=5$
$-2 x+6 y=-10$
18. $1.5 x+3 y=24$
$3 x-0.5 y=9$
20. $\begin{aligned} 2 x-\frac{1}{2} y & =\frac{7}{6} \\ \frac{1}{3} x+2 y & =-\frac{1}{2}\end{aligned}$
13. $(6,2)$
14. $(7,2)$
15. $\left(3, \frac{1}{2}\right)$
16. Infinitely many solutions that satisfy $x-3 y=5$. (They are the same line.)
17. $(-9,-5)$
18. $(4,6)$
19. $(9,-15)$
20. $\left(\frac{1}{2},-\frac{1}{3}\right)$

