Rate Law Determination #### Procedure: #### Determination 1: - 1. Dispense, from a buret, 5.00 mL of a 0.755 M $H_2C_2O_4$ solution into a clean, dry 20×150 mm test tube. - 2. Dispense, from a buret, 6.00 mL of deionized water into a 125 mL flask. - 3. Dispense, from a buret, 1.00 mL of a 0.100 M KMnO₄ solution into the beaker containing the deionized water. Swirl flask to mix the solution. - 4. Quickly transfer the H₂C₂O₄ solution from the test tube into the flask containing the KMnO₄ solution, start the timer, and swirl continuously. - 5. Stop the timer when the last trace of red disappears and the solution is yellow. Record on the Data Sheet: - 1. Volume of each reactant - 2. Volume of deionized water - 3. Elapsed time - 6. Repeat steps 1-5 until you can reproduce the elapsed time to within 10 s. Record on data sheet. - 7. Determinations 2 and 3: Follow the same procedure as used in determination 1, using the quantities of reagents designated for determinations 2 and 3. See Procedure Table below. Record all elapsed times on Data Sheet. | Reagent Proportions | | | | |---|-----------------|-----------------|-----------------| | Reactants | Determination 1 | Determination 2 | Determination 3 | | H ₂ C ₂ O ₄ solution, mL | 5.00 | 10.00 | 5.00 | | KMnO ₄ solution, mL | 1.00 | 1.00 | 2.00 | | Deionized H ₂ O, mL | 6.00 | 1.00 | 5.00 | ### Results: | Determination | Calculate | d Initial | Average | *Reaction Rate | Relative | |---------------|-------------|-------------------|---------------|-------------------------|----------| | Number | Concent | rations, | Elapsed Time, | $(x10^{-5})$, mol/L •s | Rate | | | mol/L | | sec | | | | | $H_2C_2O_4$ | KMnO ₄ | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | | | | * Reaction Rate = change [KMnO ₄] change in time | | | |---|-----------------------|-------------| | Order of reaction with respect to: | | | | (A) $H_2C_2O_4$ | (B) KMnO ₄ | | | Overall reaction order: | | | | Rate Law for the reaction: | | | Calculated rate constant, k, for the reaction: # Rate Law Determination Worksheet-Sample ## Data: | Determination
Number | Volume of H ₂ C ₂ O ₄ solution, mL | Volume of KMnO ₄ solution, mL | Volume of Deionized water, mL | Elapsed
Time, sec | |-------------------------|---|--|-------------------------------|----------------------| | 1 | 5.0 mL | 1.0 mL
1.0 mL | 6.0 mL
6.0 mL | 290 sec
310 sec | | Average Time Elapsed | | | | 300 sec | | Determination | Volume of | Volume of | Volume of | Elapsed | |---------------|--------------|-----------------------------|------------------|-----------| | Number | $H_2C_2O_4$ | KMnO ₄ solution, | Deionized water, | Time, sec | | | solution, mL | mL | mL · | | | 2 | 10.0 mL | 1.0 mL | 1.0 mL | 140 sec | | 2 | 10.0 mL | 1.0 mL | 1.0 mL | 160 sec | | | | | | | | | 150 sec | | | | | Determination
Number | Volume of $H_2C_2O_4$ solution, mL | Volume of KMnO ₄ solution, mL | Volume of Deionized water, mL | Elapsed
Time, sec | |-------------------------|------------------------------------|--|-------------------------------|----------------------| | 3 | 5.0 mL
5.0 mL | 2.0 mL
2.0 mL | 5.0 mL
5.0 mL | 145 sec | | Average Time Elapsed | | | | 150 sec | ## Results: | Determination | Calculated Initial | | Average | Reaction Rate | Relative | |---------------|--------------------------|---------------------------|---------------|--|----------| | Number | Concentrations, mol/L | | Elapsed Time, | $(x10^{-5})$, mol/L \circ s | Rate | | | $H_2C_2O_4$ | KMnO ₄ | sec | | | | 1 | 5/12 (.755M)
=.315 M | 1/12 (.10M)
=.00833 M | 300 sec | $\frac{.00833}{300} = 2.77 \times 10^{-5}$ | 1 | | 2 | 10/12(.755M)
= .629 M | 1/12 (.10M)
= .00833 M | 150 sec | $\frac{.00833}{150} = 5.54 \times 10^{-5}$ | 2 | | 3 | 5/12 (.755M)
= .315 M | 2/12 (.10M)
= .0167 M | 150 sec | $\frac{.0167}{150} = 11.13 \times 10^{-5}$ | 4 | Rate = $\frac{\text{change [KMnO}_4]}{\text{change in time}}$ | Order of reaction with respect to: | | | | | | | |--|---------------------------------------|--|--|--|--|--| | (A) H2C2O4 1st (B) K | MnO ₄ 2nd | | | | | | | Overall reaction order: 3rd | | | | | | | | Rate Law for the reaction: Rate = $k[H_2C_2O_4][KMnO_4]^2$ | | | | | | | | $k = \frac{\text{Rate}}{[\text{H}_2\text{C}_2\text{O}_4] [\text{KMnO}_4]^2}$ | | | | | | | | Calculated rate constant, k , for the real | action: $1.27 L^2$ $mole^2 \circ sec$ | | | | | |