Solve K_{a} and K_{b} Problems Using ICE Methods

There are 3 basic types of problems.
A. Calculate $\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}$ values from weak acids/weak bases.
B. Calculate values of $\left[\mathrm{H}^{+}\right]$and pH of a solution of a weak acid/base.
C. Calculate pH of salt solutions.
A. Calculate $\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}$ values from weak acids/weak bases.

Lactic acid is a weak acid. The equilibrium equation is:

$$
\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3} \rightarrow \mathrm{H}^{+}++\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}
$$

In a .100 m solution, the $\mathrm{pH}=2.44$. Find H^{+}concentration. Find K_{a} using H^{+}concentration.

Perform ICE:		$\underline{\mathrm{HC}}_{3} \underline{\mathrm{H}} 55^{\mathrm{O}_{3}}$	$\underline{\mathrm{H}}^{+}$	$\underline{\mathrm{C}}_{3} \underline{\mathrm{H}}_{5} \underline{\mathrm{O}}_{3}{ }^{-}$
I	.100	0	0	
C	-x	x	x	
	E	$.100-\mathrm{x}$	x	x

Write the equation for K_{a}

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{-}\right.}{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]}
$$

Next find H^{+}

$$
\mathrm{H}^{+}=10^{-2.44}=.0036 \mathrm{~m}=\mathrm{x}
$$

Therefore: $\quad \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ concentration at equilibrium

$$
\begin{aligned}
& =(.100-\mathrm{x})=.100-.0036=.096 \\
\mathrm{~K}_{\mathrm{a}} & =\frac{[\mathrm{x}][\mathrm{x}]}{[.100-\mathrm{x}]}=\frac{[.0036][.0036]}{[.096]} \\
& =1.4 \times 10^{-4}
\end{aligned}
$$

B. Calculate values of $\left[\mathrm{H}^{+}\right]$and pH of a solution of a weak acid/base.

The equation for a weak base is as follows. Use Kb , as OH^{-}is produced.

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{~N}_{2} \mathrm{H}_{5}^{+}+\mathrm{OH}^{-} \\
& \mathrm{Kb}=\frac{\left[\mathrm{N}_{2} \mathrm{H}_{5}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{N}_{2} \mathrm{H}_{4}\right]}
\end{aligned}
$$

Calculate the ph of a solution of a weak base, using the following equation:

$$
\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{~N}_{2} \mathrm{H}_{5}^{+}+\mathrm{OH}^{-}
$$

Original concentration of $\mathrm{N}_{2} \mathrm{H}_{4}=.100 \mathrm{~m}$
$\mathrm{K}_{\mathrm{b}}=\mathrm{N}_{2} \mathrm{H}_{4}=1.3 \times 10^{-6}$
Use ICE: $\quad \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}+\mathrm{OH}^{-}$
$\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+} \square \mathrm{OH}^{-}$

	$\underline{\mathbf{N}_{2} \mathbf{H}_{4}}$	$\underline{\mathbf{N}_{2} \mathbf{H}_{5}{ }^{+}}$	$\underline{\mathbf{O H}^{-}}$
I	.100	0	0
C	-x	x	x
E	$.100-\mathrm{x}$	x	x

$$
\mathrm{K}_{\mathrm{b}}=1.3 \times 10^{-6}=\frac{(\mathrm{x})(\mathrm{x})}{(.100-\mathrm{x})}
$$

Since K_{b} is a very small number, ignore the -x component in the equilibrium.
$\left(\mathrm{H}_{\mathrm{b}} \geq 400 \times \mathrm{K}_{\mathrm{b}} ; \quad .100 \geq 400 \times 1.3 \times 10^{-6}\right)$
For example: $1.3 \times 10^{-6}=\underline{(x)(x)}$
.100
$1.3 \times 10^{-7}=\mathrm{x}^{2}$
$3.61 \times 10^{-4}=\mathrm{x}=\mathrm{OH}^{-}$concentration
$-\log \left[3.61 \times 10^{-4}\right]=\mathrm{pOH}=3.44$
$\mathrm{pOH}+\mathrm{pH}=14$
$\mathrm{pH}=14-\mathrm{pOH}=14-3.44$
$\mathrm{pH}=10.56$
C. Calculate pH of salt solutions.

Calculate salt solutions of weak acids and weak bases. When a salt is dissolved in $\mathrm{H}_{2} \mathrm{O}$, it will form a strong base (NaOH) and weak acid (HOCl).

$$
\mathrm{OCl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HOCl}+\mathrm{OH}^{-}
$$

K_{b} is used because OH^{-}is generated. If H^{+}is generated, use K_{a}.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HOCl}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{OCl}^{-}\right]} \\
& \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \\
& \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \text {or } \mathrm{H}^{+} \quad \text { (Depending on instructor or book provided) } \\
& \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
\end{aligned}
$$

Example 1:

What is the ph of a 1.00 molar solution of $\mathrm{NaCN} ? \mathrm{~K}_{\mathrm{a}}$ for $\mathrm{HCN}=6.2 \times 10^{-10}$
Solution Steps:

1. Note that this is a salt solution of a strong base (NAOH) and a weak acid (HCN) which will produce OH^{-}ions.

$$
\begin{aligned}
& \mathrm{NaCN} \rightarrow \mathrm{Na}^{+}+\mathrm{CN}^{-} \\
& \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCN}+\mathrm{OH}^{-}
\end{aligned}
$$

2. Set up the ionization constant relationship:

$$
\begin{gathered}
\mathrm{K}_{\mathrm{b}}=[\mathrm{HCN}]\left[\mathrm{OH}^{-}\right] \\
{\left[\mathrm{CN}^{-}\right]}
\end{gathered}
$$

(K_{b} is used when OH^{-}are produced; K_{a} is used when H^{+}ions are produced.)
3. Find K_{b}

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}} \cdot \mathrm{~K}_{\mathrm{b}}=1 \times 10^{-14} \\
& \mathrm{~K}_{\mathrm{b}}=\frac{1 \times 10^{-14}}{\mathrm{~K}_{\mathrm{a}}} \\
& \mathrm{~K}_{\mathrm{b}}=\frac{1 \times 10^{-14}}{6.2 \times 10^{-10}} \\
& \mathrm{~K}_{\mathrm{b}}=1.61 \times 10^{-5}
\end{aligned}
$$

4. Solve for $\left[\mathrm{OH}^{-}\right]$the known concentration of $\mathrm{CN}^{-}=1$ molar.

$$
\begin{aligned}
& 1.61 \times 10^{-5}=\frac{[\mathrm{x}][\mathrm{x}]}{1} \\
& 1.61 \times 10^{-5}=\mathrm{x}^{2} \\
& .004 \quad=\mathrm{x}=\mathrm{OH}^{-} \text {concentration } \\
& \mathrm{pOH}^{-}-\mathrm{Log}\left[\mathrm{OH}^{-}\right]=2.40
\end{aligned}
$$

Find pH using the following formula:

$$
\begin{aligned}
& \mathrm{pH}+\mathrm{pOH}=14 \\
& \mathrm{pH}=14-\mathrm{pOH} \\
& \mathrm{pH}=14-2.40 \\
& \mathrm{pH}=11.60
\end{aligned}
$$

Example $2 \quad$ Calculate the pH of $.15 \mathrm{~m} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$.

$$
\mathrm{K}_{\mathrm{b}}=4.4 \times 10^{-4}(\text { weak base } / \text { strong acid })
$$

Equation:

	$\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{Cl}^{-}$	
	$\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{H}_{2} \mathrm{O}$	$\rightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+}$

Determine if -x is significant. Apply test.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\mathrm{Kw}}{\mathrm{~K}_{\mathrm{b}}}=\frac{1.0 \times 10^{-14}}{4.4 \times 10^{-4}}=2.3 \times 10^{-11} \\
& \mathrm{~K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}{\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}}=2.3 \times 10^{-11} \\
& \mathrm{Ha} \geq 400 \times \mathrm{K}_{\mathrm{a}} \\
& .15 \geq 400 \times 2.3 \times 10^{-11}
\end{aligned}
$$

Therefore, x is a very small amount compared to the original equation and can be ignored.

$$
\begin{aligned}
& 2.3 \times 10^{-11}=\frac{[\mathrm{x}][\mathrm{x}]}{.15} \\
& 1.9 \times 10^{-6}=\mathrm{x} \\
& \mathrm{pH}=-\log \left[1.9 \times 10^{-6} \mathrm{~m}\right]=5.72
\end{aligned}
$$

