Solve K_a and K_b Problems Using ICE Methods

There are 3 basic types of problems.

- A. Calculate K_a, K_b values from weak acids/weak bases.
- B. Calculate values of $[H^+]$ and pH of a solution of a weak acid/base.
- C. Calculate pH of salt solutions.
- A. Calculate K_a, K_b values from weak acids/weak bases.

Lactic acid is a weak acid. The equilibrium equation is:

 $HC_3H_5O_3 \rightarrow H^+ + + C_3H_5O_3^-$

In a .100m solution, the pH = 2.44. Find H^+ concentration. Find K_a using H^+ concentration.

Perform ICE:		$HC_3H_5O_3$	$\underline{H^+}$	<u>C₃H₅O₃-</u>
	Ι	.100	0	0
	С	- x	Х	Х
	Е	.100 – x	х	х

Write the equation for K_a

$$K_{a} = \underline{[H^{+}] [C_{3}H_{5}O_{3}^{-}]} \\ [HC_{3}H_{5}O_{3}]$$

Next find H⁺

 $H^+ = 10^{-2.44} = .0036m = x$

Therefore: HC₃H₅O₃ concentration at equilibrium

= (.100 - x) = .100 - .0036 = .096

$$\begin{array}{rcl} \mathbf{K}_{a} & = & \underline{[\mathbf{x}] \, [\mathbf{x}]} \\ & & [.100 - \mathbf{x}] \end{array} = & \underline{[.0036] \, [.0036]} \\ & & [.096] \end{array}$$

 $= 1.4 \times 10^{-4}$

B. <u>Calculate values of [H⁺] and pH of a solution of a weak acid/base.</u>

The equation for a weak base is as follows. Use Kb, as OH⁻ is produced.

$$N_2H_4 + H_2O \rightarrow N_2H_5^+ + OH^-$$
$$Kb = \underline{[N_2H_5^+][OH^-]}$$
$$[N_2H_4]$$

Calculate the ph of a solution of a weak base, using the following equation:

$$N_2H_4 + H_2O \rightarrow N_2H_5^+ + OH^-$$

Original concentration of $N_2H_4 = .100m$

 $K_b\!\!= N_2 H_4 = 1.3 \text{ x } 10^{\text{-}6}$

Use ICE: $N_2H_4 + H_2O \rightarrow N_2H_5^+ + OH^-$

 $N_2H_4 \quad + \quad N_2H_5 \ ^+ \quad \Box \quad OH^-$

<u>N2H4</u>		<u>N2H5</u> +	<u>OH</u> -	
Ι	.100	0	0	
С	- x	Х	Х	
Е	.100–x	Х	Х	
	- (

$$K_b = 1.3 \times 10^{-0} = (x)(x)$$

(.100 - x)

Since K_b is a very small number, ignore the -x component in the equilibrium.

$$\begin{array}{rll} (H_b \geq 400 \ x \ K_b; & .100 \ \geq \ 400 \ x \ 1.3 \ x \ 10^{-6}) \\ \\ \mbox{For example:} & 1.3 \ x \ 10^{-6} & = \underline{(x)(x)} \\ & .100 \\ \\ \mbox{1.3 } x \ 10^{-7} = x^2 \\ \\ \mbox{3.61 } x \ 10^{-4} = \ x \ = \ OH^- \ concentration \\ \\ \mbox{-log } [3.61 \ x \ 10^{-4}] = pOH = 3.44 \\ \\ \mbox{pOH} + pH \ = 14 \\ \\ \mbox{pH} \ = 14 - pOH = 14 - 3.44 \\ \\ \mbox{pH} \ = 10.56 \end{array}$$

C. Calculate pH of salt solutions.

Calculate salt solutions of weak acids and weak bases. When a salt is dissolved in H_2O , it will form a strong base (NaOH) and weak acid (HOCl).

NaOCl
$$\rightarrow$$
 Na⁺ + OCl⁻
Does not impact because it is a spectator ion.

$$OCl^- + H_2O \rightarrow HOCl + OH^-$$

 K_b is used because OH $^-$ is generated. If H^+ is generated, use $K_a.$

$$\begin{split} K_b &= \underbrace{[HOC1] \ [OH^-]}_{[OC1^-]} \\ NH_4C1 &\rightarrow NH_4^+ + C1^- \\ NH_4^+ + H_2O &\rightarrow NH_3 + H_3O^+ \text{ or } H^+ \quad (\text{Depending on instructor or book provided}) \\ K_b &= \underbrace{[H^+] \ [NH_3]}_{[NH_4^+]} \end{split}$$

Example 1:

What is the ph of a 1.00 molar solution of NaCN? K_a for HCN = 6.2 x 10⁻¹⁰

Solution Steps:

1. Note that this is a salt solution of a strong base (NAOH) and a weak acid (HCN) which will produce OH⁻ ions.

$$\label{eq:nacnow} \begin{split} &NaCN \rightarrow Na^+ + CN^- \\ &CN^- + H_2O \rightarrow HCN + OH^- \end{split}$$

2. Set up the ionization constant relationship:

$$K_b = [HCN][OH^-]$$
$$[CN^-]$$

(K_b is used when OH^- are produced; K_a is used when H^+ ions are produced.)

 $K_{a} \cdot K_{b} = 1 \times 10^{-14}$ $K_{b} = \frac{1 \times 10^{-14}}{K_{a}}$ $K_{b} = \frac{1 \times 10^{-14}}{6.2 \times 10^{-10}}$ $K_{b} = 1.61 \times 10^{-5}$

4. Solve for $[OH^-]$ the known concentration of $CN^- = 1$ molar.

1.61 x
$$10^{-5} = [\underline{x}][\underline{x}]$$

1
1.61 x $10^{-5} = x^2$
.004 $= x = OH^-$ concentration
 $pOH^- - Log [OH^-] = 2.40$

Find pH using the following formula:

		pH + pOH =	14		
		pH = 14 - p	ОН		
		pH = 14 - 2	2.40		
		pH = 11.60			
Example 2	Ca	lculate the pH o	of .15 m CH ₃ NH	3Cl.	
		$K_b = 4.4 \times 10^{-10}$) ⁻⁴ (weak base/st	trong acid)	
Equation:		CH ₃ N	$H_3Cl \rightarrow CH_3N$	$H_{3}^{+} + Cl^{-}$	
		$CH_{3}NH_{3}^{+} +$	$H_2O \rightarrow CH_3N$	$H_2 + H_3O^+$	or H ⁺
		CH ₃ NH ₃ ⁺	CH ₃ N	$H_2 + H^+$	
		$\underline{CH_3NH_3}^{\pm}$	<u>CH₃N</u>	$\underline{H}_2 + \underline{Cl}^-$	
	Ι	.15m	0	0	
	С	-X	Х	Х	
	Е	.15–x	Х	Х	

Determine if –x is significant. Apply test.

$$\begin{split} K_a &= \frac{Kw}{K_b} = \frac{1.0 \times 10^{-14}}{4.4 \times 10^{-4}} = 2.3 \times 10^{-11} \\ K_a &= \frac{[H^+] [CH_3 NH_2]}{CH_3 NH_3^+} = 2.3 \times 10^{-11} \\ Ha &\geq 400 \times K_a \\ .15 &\geq 400 \times 2.3 \times 10^{-11} \end{split}$$

Therefore, x is a very small amount compared to the original equation and can be ignored.

$$2.3 \times 10^{-11} = \underline{[x] [x]}$$
.15
1.9 x 10⁻⁶ = x
pH = -log [1.9 x 10⁻⁶m] = 5.72